PRODIS


ANR ICARE: Contacteur membranaire pour la cristallisation

Durée :3 ans

ANR ” Contacteur membranaire innovant pour la cristallisation : Application aux systèmes de type diffusion/réaction ”
Partenaire
LAGEPP

Résumé
La cristallisation/précipitation est l’une des opérations majeures des procédés chimiques industriels pour produire, purifier ou séparer les composés solides ou les produits. Jusqu’à présent, le réacteur agité est le procédé de référence pour les applications industrielles mais il y a une forte demande pour le développement de technologies de rupture, mis en évidence par de nombreux auteurs et rapports. Ainsi, les procédés membranaires sont considérés comme l’une des technologies les plus prometteuses parce qu’ils peuvent éventuellement permettre de développer un procédé intensifié, continu, facile à extrapoler avec un contrôle local fin de l’hydrodynamique et du transfert de matière/chaleur. Plusieurs tentatives de développement de nouveaux procédés de cristallisation basés sur l’utilisation de membranes microporeuses ont montrés des limites importantes à cause du colmatage des pores et de la surface de la membrane par des cristaux, ce qui induit une diminution des performances rendant ainsi cette stratégie de cristallisation largement hypothétique.
Le colmatage de la membrane et le blocage des pores pourraient éventuellement être évitées par l’utilisation de matériaux denses (c’est-à-dire non poreux) et des modules de fibres creuses, tout en gardant un procédé continu, facile à extrapoler, intensifié, ainsi que le contrôle local qui sont des avantages clés des procédés membranaires. Cette stratégie reste toutefois inexplorée jusqu’à présent et aborde un enjeu scientifique majeur : prévoir les mécanismes de cristallisation et sa localisation dans/sur un matériau polymère dense fonctionnant en continu.
ICARE se propose de relever ce défi scientifique grâce à un ensemble de 3 modules de travails combinant des études et des techniques d’imagerie sur différents systèmes de cristallisation utilisant des membranes denses, le transfert de matière, des expériences de cristallisation en cellule batch (WP1), la modélisation et la simulation du procédé de cristallisation (WP2), ainsi que la preuve de la faisabilité technologique à l’échelle laboratoire sur des modules fibres creuses du matériau dense le plus prometteur (WP3). Le carbonate de baryum est sélectionné comme composé modèle afin d’évaluer précisément la possibilité de prédire la cristallisation en fonction des propriétés de transfert de matières du polymère dense, la concentration des réactifs et les conditions opératoires. Plus particulièrement, une comparaison des mécanismes de la cristallisation entre une alimentation en CO2 gazeux ou dissous à travers un film polymère dense sera effectuée afin de tester la robustesse de l’approche numérique développée et de la simulation (WP2). Une sous-tâche (WP2.2), réalisée grâce à une collaboration internationale, sera consacrée à la modélisation moléculaire des phénomènes de cristallisation dans/sur un polymère dense. Une comparaison entre les performances prédites (WP2.2) et l’approche pour le milieu continu (WP2.1) sera réalisée.
ICARE a pour but d’effectuer une étude exploratoire des systèmes diffusifs/réactifs dans des polymères denses, incluant la cristallisation. L’objectif ultime est de développer, en 4 ans, une connaissance fondamentale de base sur les processus de cristallisation dans/sur le polymère dense, grâce à une approche pluridisciplinaire (génie chimique, science des matériaux, modélisation moléculaire), expérimentale et numérique. Les principaux résultats sont attendus en termes de développements scientifiques et de procédés industriels de cristallisation. En outre, la possibilité de sélectionner le système et les conditions opératoires, menant à une cristallisation sur la surface de la membrane ou intra-membranaire, offre des potentialités en science des matériaux (production de matériaux hybrides grâce à la cristallisation in situ), procédés de séparation (colmatage des membranes d’osmose inverse ou des résines échangeuses d’ions) ou dans l’industrie pharmaceutique (production de systèmes de libération contrôlée).

  • Dates
    Paru le 18 janvier 2023, Mis à jour le 11 octobre 2023