Thèse : soutenance de Yongxin WU « Preserving passivity Balanced Reduction for the Finite and Infinite Dimensional Hamiltonian Systems Port »

Yongxin WU has the pleasure and honor to invite you to my thesis defense entitled « Preserving passivity Balanced Reduction for the Finite and Infinite Dimensional Hamiltonian Systems Port ».
This thesis is made in the ANR project HAMECMOPSYS, under the direction of Bernhard Maschke, Mr. Yann Le Gorrec (FEMTO-ST in Besançon) and Mr. Boussad Hamroun.

A summary of the thesis is attached at the end of this email.

The defense will be held Monday, December 7, 2015 at 10:30 in Amphi 9 Themis (Themis located in the building).

Abstract:

In this thesis we have developed different structure preserving reduction methods for finite and infinite dimensional port Hamiltonian systems by using a balanced model reduction approach. In the first part we have defined a descriptor representation of port Hamiltonian systems with constraints. The balanced realization of the descriptor system has been used for reducing the port Hamiltonian descriptor system and conserving explicitly the constraint equations. In the second part, conditions have been derived on the weighting matrices of the LQG control problem such that the dynamical LQG controller is passive and has a port Hamiltonian realization. Two passive LQG control design methods have been suggested and one of them allows us to define a LQG balanced realization. Based on this realization, the effort constraint method has been used to reduce the LQG balanced port Hamiltonian system and obtain a reduced order passive LQG controller. In this way the closed-loop system is derived from the interconnection of 2 port Hamiltonian systems, hence the Hamiltonian structure has been preserved. In the third part, the proceeding results have been extended to a class of infinite dimensional port Hamiltonian system with bounded input operator. A passive LQG control design method for infinite dimensional port Hamiltonian system has been derived as by control by interconnection. Based on the balanced realization associated with this passive LQG control design, a finite dimensional approximation has been achieved and a reduced order passive LQG controller has been derived. As a consequence, the system in closed-loop with this reduced order LQG controller again admits a port Hamiltonian structure and satisfies the passivity.
Yongxin WU a le plaisir et l’honneur de vous inviter à ma soutenance de thèse intitulée « Passivity Preserving Balanced Reduction for the Finite and Infinite Dimensional Port Hamiltonian Systems ».
Cette thèse est réalisée dans la cadre du projet ANR HAMECMOPSYS, sous la direction de M. Bernhard Maschke, M. Yann Le Gorrec (FEMTO-ST à Besançon) et M. Boussad Hamroun.

Un résumé du travail de thèse est joint à la fin de ce mail.

La soutenance se tiendra le lundi 7 décembre 2015 à 10h30 dans l’Amphi Thémis 9 (situé au bâtiment Thémis).

Résumé :

Dans ce mémoire nous avons développé des méthodes de réduction des systèmes hamiltoniens à port en dimension finie et infinie qui préservent leur structure. Dans la première partie, nous avons défini une représentation des systèmes hamiltoniens à port avec contraintes sous la forme d’équations différentielles algébriques (DEA) de type de « système descripteur ». De cette forme nous avons déduit une réalisation équilibrée du système hamiltonien à port exprimée sous forme de « système descripteur » contenant les mêmes systèmes d’équations de contrainte. Dans la deuxième partie, nous avons défini une classe de problèmes de commande LQG tels que le contrôleur dynamique LQG est passif et admet une réalisation hamiltonien à port. Deux méthodes de synthèse de commande passive LQG sont proposées et une de ces méthodes LQG nous a permis de définir une réalisation équilibrée LQG. Puis nous avons appliqué la méthode de contrainte de l’effort pour réduire le système hamiltonien à port et obtenir une commande LQG passive d’ordre réduit. Ce contrôleur LQG admettant une réalisation hamiltonienne, la structure hamiltonienne est préservée pour le système en boucle fermée par interconnexion de systèmes hamiltoniens à port. Dans la troisième partie, nous avons généralisé les résultats précédents aux systèmes hamiltoniens à ports linéaires de dimension infinie. Pour cela nous avons considéré une classe de systèmes hamiltoniens à ports de dimension infinie dont l’opérateur d’entrée est borné et un problème de commande LQG passif. Sous des conditions de nucléarité de l’opérateur de Hankel lié au problème LQG, nous définissons une réalisation équilibrée LQG passive du système et une approximation en dimension finie. Le contrôleur LQG passif d’ordre réduit obtenu par cette approximation admet une réalisation hamiltonienne à port et par conséquent la structure hamiltonienne et la passivité sont préservées en boucle fermée.

Filed under: actualité