Dynamics, Control and Observation of Processes


Scientific expertise:

Automatic, Process Engineering, Nonlinear Systems, Observability and Observer Design, Control and Stabilization, Output Control, Multi-Agent Systems, Hybrid Systems, Network Control Systems, Dynamic Process Modeling (from the laboratory scale to industrial scale), thermodynamics, estimation of physicochemical parameters by inverse methods ….

Examples of processes:

– three-phase catalytic processes such as Slurry columns
– fat production processes
– decantation
– catalytic foams
– multi-scale processes
– absorption processes
– reactive extrusion
– crystallization  in emulsion


Process dynamics and control of systems of conservation laws:

The design of energy efficient, reliable and intensive processes requires the development of dynamical models of processes which are accurate and adaptable and take account of their energy and entropy properties. Therefore the main research objective of the group is the development of modeling methods, algorithms for the numerical simulation and the control of processes which explicitly use the physical properties of the processes.

In a first instance, dynamical models using bond-graph modeling and the parameter identification of complex, network-structured processes are investigated by the use of measurements of transient behavior. Different multi-scale processes are considered such as adsorption, reactive extrusion processes, heat pumps, thermal stocks using phase changes in fluids and crystallization in emulsion processes, involving mass and heat transport in heterogeneous and reactive media with moving interface.

In a second instance, nonlinear control laws are developed, based on passivity techniques and using  invariants and balance equations of thermodynamically-based functions. For this goal our research group develops different formulation of processes, in particular the Continuous Stirred Tank Reactor, as quasi-port Hamiltonian systems or input-output contact systems. Control laws for the stabilization of such processes are then developed based on structure preserving feedback control such as IDA-PBC.

In a third instance the research group works on the control of systems of conservation laws, eventually augmented with source terms due for instance to the entropy creation terms. Infinite-dimensional port-Hamiltonian systems with boundary port variables are considered and specific spatial discretization algorithms are developed which preserve the Dirac structure underlying the port-Hamiltonian systems. The existence of solutions and the relation with boundary control systems and well-posed systems is also investigated, based on the semi-group theory or on classical fixed-point techniques. Finally the stabilization of nonlinear systems of conservation laws using Riemann invariants and gain scheduling is addressed.

 Directors: Melaz TAYAKOUT-FAYOLLE and Vincent ANDRIEU

Academic partners

Ampere Ecole Central https://www.ec-lyon.fr/recherche/laboratoires/ampere
AMPERE lab http://www.ampere-lab.fr/
Cran http://www.cran.univ-lorraine.fr/
Institut de Chimie de Lyon: ICL http://www.iclyon.fr
Institut Charles Sadron : ICS https://www.ics-cnrs.unistra.fr/
Institut de chimie et procédés pour l’énergie, l’environnement et la santé : ICPEES https://icpees.unistra.fr
ILM https://ilm.univ-lyon1.fr/
INRAE https://www.inrae.fr/
IRSTEA https://www.irstea.fr/fr/irstea/nos-centres/lyon-villeurbanne
LAAS https://www.laas.fr/public/
LIRIS https://liris.cnrs.fr
Mines paristech http://www.mines-paristech.fr/
Université de Toulon www.univ-tln.fr


International partners

Bologna http://www.dei.unibo.it/en/research/research-facilities/Labs/casy-center-for-research-on-complex-automated-systems
CESAME LLN https://clusters.wallonie.be/wagralim-fr/ucl-cesame.html?IDC=1730&IDD=16707
Université Catholique de Louvain https://uclouvain.be/fr/index.html
University of Genova (Italy) http://www.dime.unige.it/it
University of  Groeningen https://www.rug.nl/
University of Hyogo https://www.u-hyogo.ac.jp/index.html
University of Melbourne https://electrical.eng.unimelb.edu.au/
University Passau https://www.uni-passau.de/
Universitat Politechnica de Cataluna https://www.upc.edu/ca
Universté Technique d’Ilmenau (Allemagne) https://www.tu-ilmenau.de/
Université Technique de Munich (Allemagne) https://www.tum.de/
Tu/Eindhoven https://www.tue.nl/en/


Industry partners

Nutrition Animale Adisseo https://www.adisseo.com/
bioMérieux https://www.biomerieux.fr
CEA (Cadarache, Grenoble, Marcoule, Saclay) https://www.cea.fr/
CRES Centre de Recherches de Solaize Total https://totalenergies.com/fr
EURECAT https://www.lyon-entreprises.com/entreprise/eurecat-france/presentation-voulte-sur-rhone
IFPEN https://www.ifpenergiesnouvelles.fr/
Ingé’LySE http://www.ingelyse.com/
Saint-Gobain NorPro https://www.norpro.saint-gobain.com/
SNCF https://www.sncf.com/fr/innovation-developpement/innovation-recherche
TRTG TOTAL Research and Technology Gonfreville https://tools.cofrac.fr/fr/organismes/fiche.php?entite_id=12066439

Find all the information on the site .

Sort via metadata!

704 documents

  • Romain Kersaudy, Denis Mangin, E. Gagnière, Stéphane Labouret, Didier Colson, et al.. Suivi de cristallisation en ligne par Spectroscopie Résolue Spatialement (SRS). Sciences et Technologies des Poudres ; Poudres et Matériaux Frittés STPMF, Jul 2021, online, France. ⟨hal-03701092⟩
  • Hamdi Habib, Mickael Rodrigues, Bouali Rabaoui, Naceur Benhadj Braiek. A FAULT ESTIMATION AND FAULT–TOLERANT CONTROL BASED SLIDING MODE OBSERVER FOR LPV DESCRIPTOR SYSTEMS WITH TIME DELAY. International Journal of Applied Mathematics and Computer Science, 2021, ⟨10.34768/amcs-2021-0017⟩. ⟨hal-03288124⟩
  • C. Valentin, Couenne F., C. Jallut, J.M. Choubert, M. Tayakout-Fayolle. Dynamic Modeling of a Batch Sludge Settling Column by Partial Differential Non Linear Equations with a Moving Interface. ADCHEM 2021 11th IFAC SYMPOSIUM on Advanced Control of Chemical Processes, Jun 2021, Venise (virtual), Italy. 6 p. ⟨hal-03026811⟩
  • Lucas Brivadis, Jean-Paul Gauthier, Ludovic Sacchelli, Ulysse Serres. Avoiding observability singularities in output feedback bilinear systems. SIAM Journal on Control and Optimization, 2021, 59 (3), pp.1759-1780. ⟨10.1137/19M1272925⟩. ⟨hal-02172420v2⟩
  • Daniele Astolfi, Pauline Bernard, Romain Postoyan, Lorenzo Marconi. Constrained state estimation for nonlinear systems: a redesign approach based on convexity. IEEE Transactions on Automatic Control, 2021, 67 (2), pp.824-839. ⟨10.1109/TAC.2021.3064537⟩. ⟨hal-03157454⟩
  • Vincent Andrieu, Lucas Brivadis, Jean-Paul Gauthier, Ludovic Sacchelli, Ulysse Serres. From local to global asymptotic stabilizability for weakly contractive control systems. Automatica, 2021, 124, pp.109308. ⟨10.1016/j.automatica.2020.109308⟩. ⟨hal-02611605⟩
  • Daniele Astolfi, Angelo Alessandri, Luca Zaccarian. Stubborn and Dead-Zone Redesign for Nonlinear Observers and Filters. IEEE Transactions on Automatic Control, 2021, 66 (2), pp.667 – 682. ⟨10.1109/TAC.2020.2989816⟩. ⟨hal-02556577⟩
  • Daniele Astolfi, Luca Zaccarian, Marc Jungers. On the use of low-pass filters in high-gain observers. Systems and Control Letters, 2021, 148, pp.104856. ⟨10.1016/j.sysconle.2020.104856⟩. ⟨hal-03105613⟩
  • Francesco Galuppo, Thomas Reiche, Vincent Lemort, P Dufour, Madiha Nadri. Organic Rankine Cycle based waste heat recovery modeling and control of the low pressure side using direct condensation and dedicated fans. Energy, 2021, 216, pp.119074. ⟨10.1016/j.energy.2020.119074⟩. ⟨hal-03401098⟩
  • Gabriel A. Ledezma Lopez, Jan Verstraete, Loic Sorbier, Damien Leinekugel-Le-Cocq, Elsa Jolimaître, et al.. Computational Characterization of a Pore Network Model by Using a Fast Nitrogen Porosimetry Simulation. Computer Aided Chemical Engineering, 2021, Computer Aided Chemical Engineering, 50, pp.1111-1116. ⟨10.1016/B978-0-323-88506-5.50171-6⟩. ⟨hal-03476808⟩


Team leaders:

More information under LAGEPP Contacts